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Nuclear factor erythroid 2-related factor (Nrf)2 is a transcription factor that integrates

cellular stress signals by directing various transcriptional programs. As an evolutionarily

conserved intracellular defense mechanism, Nrf2 and its endogenous inhibitor Kelch-like

ECH-associated protein (Keap)1 inhibit oxidative stress in the lung, which is the internal

organ that is continuously exposed to the environment. Oxidative stress is implicated in

the pathogenesis of various lung diseases including asthma, acute lung injury, chronic

obstructive pulmonary disease (COPD), and interstitial lung disease (ILD). Thus, Nrf2 is

considered as a potential therapeutic target in lung diseases owing to its antioxidant effect.

Nrf2 also plays a complex role in lung cancer, acting as a tumor suppressor and promoter;

recent studies have revealed the tumor-promoting effects of Nrf2 in tumors that have

undergone malignant transformation. Lung cancer-associated mutations in Keap1 disrupt

Keap1eNrf2 complex formation, resulting in the ubiquitination and degradation of Keap1,

and the constitutive activation of Nrf2. In lung cancer cells, persistently high nuclear Nrf2

levels induce the expression of genes that contribute to metabolic reprogramming, and

stimulate cell proliferation. In this review, we outlined the major functions of Nrf2, and

discussed its importance in pulmonary diseases such as asthma, acute respiratory distress

syndrome, and lung cancer. Elucidating the mechanisms through which Nrf2 modulates

the initiation and progression of pulmonary diseases can lead to the development of

therapeutics specifically targeting this pathway.
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macrophages and epithelial cells protects against the proin-

1. Introduction

Nuclear factor erythroid 2-related factor (Nrf)2 is a transcrip-

tion factor that regulates the expression of genes involved in

protection against oxidative damage [1,2]. Kelch-like ECH-

associated protein (Keap)1 inhibits the activity of Nrf2 by

preventing its binding to the antioxidant response element

(ARE) [3]. Single-particle electron microscopy analysis has

revealed that a Keap1 homodimer binds one molecule of Nrf2

[4] through two binding sitesdthe DLG and ETGE

motifsdwithin the Neh2 domain of Nrf2 [5]. Thus, under

normal conditions, Nrf2 is continuously degraded in a Keap1-

dependent manner through the proteasome pathway [6].

However, in the presence of reactive oxygen species (ROS) or

electrophiles, Nrf2 is stabilized due to the disruption of Keap1-

mediated repression, and accumulates in the nucleus, where

it activates target genes related to cytoprotection by binding to

AREs or electrophile-responsive elements as an Nrf2/small

Maf heterodimer [2,7] (Fig. 1). Nrf2 regulates the glutathione

(GSH)- and thioredoxin (TXN)-dependent antioxidant systems

by targeting the catalytic andmodulatory subunits of the GSH-

synthesizing enzyme glutamate-cysteine ligase (GCLC and

GCLM) [8], and regulating the expression of TXN1-associated

factors such as thioredoxin reductase 1 [9]. Given the role of

oxidative stress in the pathogenesis of asthma, acute lung

injury, chronic obstructive pulmonary disease (COPD), and

interstitial lung disease (ILD), Nrf2 has attracted attention as a

potential therapeutic target in the treatment of lung diseases.

Contrastingly, it is becoming increasingly clear that Nrf2

has more than a cytoprotective function; it also regulates

genes associated with lipid, amino acid, carbohydrate, and

nucleotidemetabolism [10,11]. A recent study also highlighted

the oncogenic role of Nrf2; persistently high nuclear Nrf2

levels were shown to enhance the expression of genes in

anabolic pathways, which promotes cancer cell proliferation

[12]. In this review,we outlined the principal functions of Nrf2,

and discussed its importance in pulmonary diseases such as

asthma, acute respiratory distress syndrome, and lung cancer.

2. Role of Nrf2 in asthma

Asthma is an inflammatory airway disease that results in

airflow limitation, hyper-reactivity, and remodeling. Nrf2 in
flammatory and oxidizing effects of diesel exhaust chemicals

[13], and thus has a protective function in asthma. Indeed,

disrupting Nrf2 enhanced the susceptibility of mice to severe

airway inflammation and asthma [14]. Nrf2 was also found to

regulate the antioxidant response and proliferation in airway

smooth muscle cells, which exhibit aberrant function in

asthma [15].

Although asthma is primarily an inflammatory airway

disease associated with type 2 helper T cells, epithelial

dysfunction is also relevant to its pathogenesis [16]. Specif-

ically, impaired barrier function caused by disruption of

epithelial tight junctions, allows inhaled substances to pass

more easily into the airway wall and interact with immune

and inflammatory cells, thereby increasing susceptibility to

air pollution and respiratory virus infection [16]. We previ-

ously reported that steroids can potentiate airway epithelial

barrier integrity through mechanisms that have not yet been

elucidated [17]. Through global gene expression profiling, we

determined that Nrf2-mediated oxidative stress response is

critical for maintaining epithelial barrier integrity upon ste-

roid treatment [18] (Fig. 2). We further demonstrated that

aldehyde oxidase (AOX)1 functions downstream of Nrf2 in the

formation of the airway epithelial barrier [18]. These data

suggest that therapeutics targeting the Nrf2/AOX1 pathway

can alleviate asthma by enhancing airway epithelial barrier

integrity.
3. Role of Nrf2 in acute lung injury

Acute respiratory distress syndrome (ARDS) is a life-

threatening syndrome characterized by a rapid-onset bilat-

eral pulmonary infiltration and hypoxemia. ROS play an

important role in the pathogenesis of ARDS associated with

sepsis, hyperoxia, trauma, pharmaceutical or xenobiotic

exposure, and mechanical ventilation [19]. Nrf2-deficient

mice were more susceptible to ARDS than their wild-type

counterparts [20], and a non-lethal dose of lipopolysaccha-

ride (LPS) induced lung inflammation in Nrf2-deficient lungs,

suggesting that Nrf2 protects against sepsis-induced acute

lung injury [21]. NADPH oxidase-dependent ROS, proin-

flammatory cytokine (tumor necrosis factor-a and

interleukin-6), and chemokine (macrophage inflammatory

protein 2 and magnesium-dependent phosphatase 1) levels
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Fig. 1 e Activation of Nrf2. Nrf2 is continuously degraded through the Keap1-dependent proteasome pathway under normal

conditions. However, in the presence of ROS, Nrf2 is stabilized by the alleviation of Keap1 repression and accumulates in the

nucleus, leading to activation of target genes related to cytoprotection through the binding of the Nrf2/small Maf

heterodimer to ARE.
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were increased upon LPS treatment in Nrf2-deficient perito-

neal neutrophils, but not in wild type cells [22]. In humans,

NRF2 gene polymorphisms increase the risk of acute lung

injury [23]; however, there is no direct evidence indicating

that increasing Nrf2 activity leads to clinical improvement of

acute lung injury. Thus, although Nrf2 is a promising candi-

date for therapeutic interventions in ARDS, further investi-

gation is required to translate the experimental findings to a

clinical setting.
4. Role of Nrf2 in lung cancer

Nrf2 plays a critical role in cancer pathophysiology by acting

both as a tumor suppressor and an oncogene. Sulforaphane is

a phytochemical present in broccoli sprouts that was shown

to activate the Nrf2-dependent antioxidant pathway [24], and

suppress carcinogenesis in multiple organs including the

lungs [25]. SulforaphaneeNrf2-mediated induction of phase 2

antioxidant enzymes is thought to promote cellular defense

against oxidative damage and carcinogen removal. However,

as sulforaphane also induces other cellular responses

including apoptosis and cell cycle arrest [26,27], the mecha-

nism underlying these regulated steps remains to be

elucidated.

Lung cancer-associated mutations in KEAP1 have been

identified that result in constitutive activation of Nrf2

[28e30] through disruption of Keap1eNrf2 complex
formation, which stabilizes Nrf2. Cancer cells take advan-

tage of the overexpression of Nrf2 target genes by prolifer-

ating and resisting cellular defense mechanisms; for

instance, cancer cell lines expressing lower levels of KEAP1

and mutant KEAP1 showed greater resistance to cisplatin

than those with normal KEAP1 levels, suggesting that

resistance to chemotherapeutic agents is enhanced by

constitutive Nrf2 activation [30]. Conversely, silencing NRF2

in non-small lung cancer cells reduced colony formation on

soft agar relative to control cells [31], and NRF2 depletion in

non-small lung cancer cells completely suppressed tumor

formation in athymic mice [31]. Activation of Nrf2 through

the binding of cyclin-dependent kinase 20 to Keap1 also

increased the resistance of lung cancer cells to radio-/

chemotherapy [32], while small molecule inhibitors of NRF2

exhibited anti-tumor activity in KEAP1-deficient non-small

lung cancer [33].

The dual roles of Nrf2 in cancer may be attributed to its

target genes; Nrf2 activators protect normal cells from car-

cinogens, whereas its inhibitors suppress the proliferation of

cancer cells that exhibit aberrant Nrf2 activation (Fig. 3). In

normal cells, low levels of Nrf2 are sufficient for maintaining

cellular homeostasis; Nrf2 blocks tumor initiation and cancer

metastasis by removing carcinogens, ROS, and other DNA-

damaging agents. However, in cancer cells, accumulation of

DNA damage can lead to mutations in KEAP, and conse-

quently, the constitutive activation of Nrf2, which then acti-

vates metabolic genes that stimulate cell proliferation.
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Fig. 2 e Nrf2 pathway and airway epithelial barrier integrity. Steroids induce AOX1 expression through the Nrf2 pathway,

resulting in the formation of the airway epithelial barrier and enhancement of its integrity.
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5. Role of Nrf2 in chronic obstructive
pulmonary disease

Chronic obstructive pulmonary disease (COPD) is character-

ized by persistent respiratory symptoms and airflow limita-

tion, caused by a mixture of small airway disease and

pulmonary emphysema. Oxidative stress plays a crucial role

in the pathogenesis of COPD through the activation of the

proinflammatory transcription, impairment of antiprotease

defenses, cellular senescence, DNA damage, autoantibody

generation, and corticosteroid resistance via inactivation of

histone deacetylase 2 [34]. Therefore, the Nrf2-antioxidant

response is considered to be a promising candidate for the

antioxidant therapy of COPD. Aged smokers and patients with

COPD exhibit a reduction in the expression of Nrf2 in their

pulmonary macrophages [35]. Genetic disruption of Nrf2 in

mice caused early onset and severe emphysema [36].

Furthermore, in mice fed a diet containing the potent Nrf2

activator 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]

imidazole (CDDO-Im) reduced lung oxidative stress, alveolar

cell apoptosis, and alveolar destruction caused by chronic

exposure to cigarette smoke (CS) [36]. These results suggest

that Nrf2 contributes to a pathogenic process leading to pul-

monary emphysema induced by CS exposure, and this pro-

cess can be reversed by a chemical activator of Nrf2.
Exacerbation of COPD is an important event in the natural

history of the disease. Respiratory infection is one of the most

common causes of exacerbation of COPD [37]. Themucociliary

escalator contributes to a primary innate defense mechanism

in the lungs, in which motile ciliated epithelial cells eliminate

particles and pathogens trapped in the mucus from the air-

ways. CS exposure disrupts airway epithelial cell function and

shortens airway cilia, resulting in impaired mucociliary

clearance (MCC) [38]. In patients with COPD, impaired airway

clearancemay promote susceptibility to respiratory infections

[37]. We previously reported that Nrf2�/� mice had consider-

ably impaired basal MCC compared with WT mice exposed to

room air [39]. Nrf2�/� mice exposed to CS had no MCC after 3

weeks of exposure [39]. It has also been reported that the

activation of Nrf2 by the phytochemical sulforaphane,

restored bacterial recognition and phagocytosis in alveolar

macrophages from patients with COPD [40]. Furthermore,

sulforaphane treatment enhanced pulmonary bacterial

clearance by alveolar macrophages, and reduced inflamma-

tion in wild type mice, but not in Nrf2-deficient mice exposed

to CS for 6 months [40]. These findings demonstrate the

importance of Nrf2 in improving antibacterial defenses, and

provide a rationale for targeting this pathway to prevent the

exacerbation of COPD.

Contrary to these experimental findings, daily oral

administration of sulforaphane to patients with COPD did not

https://doi.org/10.1016/j.resinv.2019.10.003
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Fig. 3 e Nrf2 in cancer cells. In normal cells, NRF2 is activated by oxidative stress. It induces the expression of genes

encoding antioxidant proteins that maintain cellular homeostasis and provide cellular protection. In cancer cells, NRF2 also

activates genes associated with metabolism, which may promote cell proliferation.
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result in consistent changes in Nrf2-dependent gene expres-

sion or markers of inflammation in alveolar macrophages and

bronchial epithelial cells at the doses used [41]. Further

investigation is required to translate the experimental find-

ings to a clinical setting of COPD.
6. Role of Nrf2 in interstitial lung disease

Interstitial lung disease (ILD) is a group of lung diseases that

cause fibrosis of the lungs. Although the molecular mecha-

nisms of ILD remain poorly understood, ROS are thought to

play an important role in the regulation of this disease [42]. It
has been reported that indices of lung fibrosis are significantly

greater in bleomycin-treated Nrf2�/� mice than in Nrf2þ/þ

mice [43]. Bleomycin induced Nrf2 expression in mouse lungs,

and upregulation of several NRF2-inducible antioxidant

enzyme genes, including superoxide dismutase 1 (SOD1),

glutathione-S-transferase (GST), glutathione peroxidase (GPx),

NAD(P)H quinine dehydrogenase 1 (NQO1), and heme

oxygenase-1 (HO-1) [43]. Bleomycin-induced expression of all

these enzyme genes were significantly higher in Nrf2þ/þ mice

than in Nrf�/� mice [43]. The activation of Nrf2-Keap1

signaling by epigallocatechin-3-gallate (EGCG) inhibited

inflammation during bleomycin-induced experimental pul-

monary fibrosis [44]. In the lung tissues obtained from human

https://doi.org/10.1016/j.resinv.2019.10.003
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subjects with idiopathic pulmonary fibrosis (IPF), while Nrf2

was expressed in alveolar epithelial cells, it was largely absent

in fibroblasts within fibroblastic foci [45]. These results sug-

gest that excessive oxidative stress has various deleterious

effects that might contribute to the pathogenesis of ILD.

Pulmonary hypertension (PH) is a common complication of

ILD, resulting in reduced exercise capacity and poor prognosis

[46]. However, it is thought that PH-targeted therapy should

not be used for most patients with PH-associated lung dis-

eases including ILD and COPD as it may be harmful [47].

Therefore, it is critical to find new therapies for PH. In an

experimentalmodel, PH caused by chronic exposure to CSwas

reduced in mice fed a diet containing the potent Nrf2 acti-

vator, CDDO-Im [36]. For clinical application, a phase II study

used bardoxolonemethyl, an activator of the Nrf2 pathway, to

treat patients with PH associated with ILD (LARIAT/

NCT02036970) [48]. Further investigations are needed to eval-

uate therapies and strategies to improve outcomes in patients

with ILD.
7. Conclusions

Nrf2 plays important roles in the pathogenesis of human lung

diseases. Accumulating evidence indicates that Nrf2 activa-

tion can be a safe and effective strategy for the treatment of

inflammatory lung diseases. The fact that Nrf2 suppresses

tumor initiation and cancer metastasis in normal cells, but

can increase proliferation when overexpressed in cancer cells

suggests that its activities are protective in the early stages of

tumorigenesis, but detrimental in the later stages. Although

the detailed mechanisms through which Nrf2 exerts both

protective and deleterious effects remain to be determined,

therapeutics that target Nrf2 activators and inhibitors in

different contexts are promising for the treatment of lung

diseases.
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